Reference class forecasting using pluralism: Fighting single parameter obsessions

Traveling around prestigious Universities and Business Schools in the US this week on an institutional assignment (this post comes from Chapel Hill, NC), one thing struck me in this society, pluralism. I read with interest my friend Suresh Satyamurthy’s piece in (link here) that uses a hangman metaphor for an investor review in the start-up world. In Suresh’s start-up world, the investor is hung-up on a single parameter – scale (pun intended). It set me thinking – any evaluation of performance (more importantly, assessment of future performance) needs to be grounded in as many parameters as possible. In this post, I will introduce Reference Class Forecasting (RCF) as a technique for fighting such biases like single parameter obsession. Drawing on research on behavioural economics, I attempt to provide guidelines for entrepreneurs and investors to make better forecasts of future performance.

Intent-outcome relationship

This is possibly the first and the most obvious starting point of any assessment. Start with what was the intent in the first place. If the stated intent of the platform was to transform the industry, please define what is industry transformation and measure those, and not start harping on profitability. Not every business needs to show the same kind of performance on the same parameters. Take the example of baby products company, The founders’ motivation to start-up arose from the difficulty in finding products for their own children – availability, variety, poor quality, and certain international products/ brands not available in India (read their interview here). So, the best performance metric for assessing the performance of would be to see if they have been able to “make a wide variety of good quality international products and brands available to parents”. The performance metrics would therefore be (a) number of outlets – online and offline, (b) inventory size and variety, (c) number of brands, (d) number of products uniquely available at, at least in a specific geography, and (e) number of parents reached. Scale here would mean growth in number of customers, brands, products, and channels. Not GMV, not anything else. Yes, profitability is important, but not the first parameter of success.

Constructs, variables, and measures

Hmm, I may sound like a research methods teacher, but I think this is important to understand. Everyone (at least those reading this blog post) understands that everything could be measured in a variety of ways. A construct is an attribute of a person/ entity that cannot be observed or measured directly, but can be inferred using a number of indicators, known as manifest variables. For instance, entrepreneurial success is a construct that is measured by a variety of variables ranging from firm performance, firm growth, market power, firm’s influence in industry standard setting, pioneering innovation, to even investor wealth creation (or exit valuation) at sell-out to a large corporation. Each of these variables could be measured using different measures; see for instance, the number of measures we identified for firm growth in the context of in the last section. Can you see a decision–tree like structure here?


So, when I think of multiple parameters, I am reminded of indices. Indices like Human Development Index (HDI) as a measure of economic development, or a Consumer Price Index (CPI) as a measure of inflation. Each and every of these indices are prone to discussions and debates about what constitutes these indices and why; and in what proportion/ weights. Take for instance HDI that is a composite of life expectancy (personal well being), education (social well being), and income per capita (economic well being). Why only these? What about social and racial discrimination? What about ecological sustainability? Similar is the case with consumer price index (CPI), which is calculated using prices of a select basket of items, with price data collected weekly, monthly, or half-yearly for specific items. Again, why should tobacco products prices be included in CPI calculations? Or we could debate of how the housing price index is calculated for inclusion in the CPI. Does age composition of the household matter in calculating the CPI basket? For a relatively young family, would the basket of goods not be different than those families with more elders than children?

So, to cut my long argument short, please refrain from creating indices that just simply represent a mish-mash of parameters to evaluate a start-up.

My recommendation: Use reference class forecasting

Reference class forecasting (RCF), sometimes also referred to as comparison class forecasting is a method recommended to overcome cognitive biases and misplaced incentives. My favourite article on this appeared in The McKinsey Quarterly (see here). Let me elaborate the theory first.

Nobel laureate Daniel Kahneman and Amos Tversky’s work on theories of decision making under uncertainty is the starting point for understanding RCF. They described how people make decisions that are seemingly irrational while dealing with probabilities and forecasts using Prospect Theory (see an insightful class by Prof. Schiller, another Nobel Laureate, on YouTube here). Summary relevant to us: people are more concerned by smaller losses than equivalent gains; and people round off probabilities of occurrence to either zero or one, when it is close to either, and in between, exaggerate.

Let us understand how an entrepreneur could use this theory to manipulate his capital provider. She shows some initial success, and likens her business model to an already successful model somewhere else, in some other context; and gets the investor to exaggerate the probability of her success. For example, I know a friend wanted to build the Uber of toys in India. Why buy toys, just rent them, let the child play for a week, and return it back to the library next week to issue a new set of toys. Sounds exciting? Just that the economics did not work out the cost of damages to the toys small children could do, that would render it useless for the next borrower (like breaking one car wheel). The entrepreneur kept the rentals high enough to account for such losses, and soon her customers realised that the rentals were working out far more expensive than buying new toys, notwithstanding the child refusing to part with his toys at the end of the week. The entrepreneur continued to convince his investors to keep investing in her, luring them to wait for the economies of scale to kick-in and she could have enough bargaining power with toy manufacturers to directly import from the North of Himalayas, but that never happened and the investor exited the firm at its lowest valuation.

These biases manifest themselves in the form of delusional optimism, rather than a clear understanding and detailed evaluation of costs and benefits, even when hard data is available.

Steps in using RCF: A field guide

RCF helps forecasters and planners overcome these biases by situating the reference point outside of the subject being assessed. In order to forecast (or assess future performance) a business, investors need to identify a reference class of analogous businesses, estimate the distribution of the outcomes of those firms, and benchmark the enterprise at an appropriate point of the distribution. Firstly, the investors should identify appropriate reference class for the enterprise. These reference classes need to be identified using a variety of parameters that match the enterprise. The next step is to analyse the performance of the firms in the reference class and map them into a probability distribution. There may be clusters of firms that may emerge during this distribution-mapping exercise; there may be instances of only extremes of firm performance observed (say in winner-takes-all markets); or there could be continuous distributions.

The next task is to use pluralism in the parameters to position the enterprise in the distribution. Here is where multiple parameters would help in an reliable estimate of the position. For instance, an Uber for toys in India would only work when the marginal costs of renting out a car (wear and tear) is negligible compared to the fixed (sunk) costs of buying the car. Whereas in the toys market, the marginal costs of a child playing with the toy is a significant proportion of the market price of the toy, and therefore this enterprise would not be subject to the same evolutionary direction as Uber. However, if the enterprise was repositioned as a toy library (as my friend ultimately did), it would work – look at how the cost structures of library and toys work. It provided her a benchmark on only buying those toys that would be durable, held the customer’s attention for only short periods of time, and were very expensive to buy. Typical examples were multi-player games, which no child wanted to own independently (given the small size of families today), but would rent out during the weekends/ birthday parties for a small proportion of the cost of the game.

So, hers is calling entrepreneurs and investors to overcome such cognitive biases and forecast better.

Comments and feedback welcome.



Author: Srinivasan R

Professor of Corporate Strategy at the Indian Institute of Management Bangalore. All views are personal. The views and opinions expressed here are of the author, and not those of the Indian Institute of Management Bangalore; and are not intended to endorse, harm, malign, or defame any individual, group, or organisation.

1 thought on “Reference class forecasting using pluralism: Fighting single parameter obsessions”

  1. Their obsession to start a business , get a quick identity and a ‘me too’ mind set do not allow them to do the due dilligence (RCF) and therefore their graph quickly gets a nosedive. Unfortunately this is happening with some good businesses.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s